Spletna stran Psiholoških obzorij uporablja piškotke za namene avtentikacije uporabnikov po prijavi na spletno stran, morebitno stalno prijavo na željo uporabnika in za namen beleženja števila ogledov posameznih strani Psiholoških obzorij.
Ali se strinjate, da na vaš računalnik (brskalnik) naložimo piškotke za te namene? Svojo odločitev lahko kasneje tudi spremenite na strani Zasebnost.

Želim izvedeti več

Psihološka obzorja :: Horizons of Psychology

Znanstveno-strokovna psihološka revija Društva psihologov Slovenije

Indeksirana v:
Scopus
PsycINFO
Academic OneFile

Smo člani DOAJ in CrossRef

sien
VSEBINA ZA AVTORJE PREDSTAVITEV UREDNIŠTVO POVEZAVE

Iskalnik

Moj račun

Članki z največ ogledi

 

« Nazaj na Letnik 24 (2015)

flag Go to the article page in English / Pojdi na angleško stran članka


Vpliv različnih motečih dražljajev na prostorski delovni spomin

Martina Starc in Grega Repovš

pdf Polno besedilo (pdf)  |  Ogledi: 244  |  flagNapisan v slovenščini.  |  Objavljeno: 7. januar 2016

pdf https://doi.org/10.20419/2015.24.433  |  Citati: CrossRef (0)

Povzetek: Varovanje informacij pred različnimi motnjami je ključno za optimalno delovanje delovnega spomina. V študiji smo preverili, kako prisotnost motečih dražljajev vpliva na prostorski delovni spomin. Primerjali smo vpliv motečih dražljajev, ki izstopajo zaradi podobnosti tarčnim dražljajem ali zaradi negativne čustvene nasičenosti. Preverili smo vpliv na natančnost visoko ločljivih predstav, kot tudi na vpliv prostorskih kategorij, ter natančneje opredelili ne le obstoj, temveč tudi smer motečega vpliva (proti ali stran od motnje). Udeleženci (n = 25, 8 moških, 19–31 let) so si morali zapomniti natančen položaj prikazane premešane slike in ga po premoru obnoviti z igralno palico. V nekaterih poskusih je bila v času premora prikazana dodatna moteča slika (premešana, nevtralna ali negativna). Merili smo razpršenost odgovorov (kótnih napak) ter usmerjene premike proti prototipnim kótom (45°) in proti položaju motečih dražljajev. Prisotnost motečih dražljajev ni vplivala na razpršenost odgovorov, zmanjšala pa je težnjo udeležencev, da odgovore premikajo proti prototipnim kótom. Različne vrste slik se v tem učinku niso razlikovale. V nasprotju s pričakovanji so udeleženci odmikali svoje odgovore stran od položaja motečih slik; ta učinek je bil bolj izrazit pri negativnih slikah. Udeleženci pri reševanju naloge prostorskega delovnega spomina najverjetneje poleg natančnega pomnjenja položaja in vzdrževanja pozornosti na mestu dražljaja strateško uporabljajo tudi informacijo o pripadnosti prostorskim kategorijam (kvadrantom) ter informacijo o položaju motečega dražljaja. Odbojni učinek motečega dražljaja najverjetneje izhaja iz inhibicije njegovega položaja in kaže na potrebo po dopolnitvi računskih modelov prostorskega delovnega spomina ter upoštevanju različnih strategij uporabe delovnega spomina.

Ključne besede: delovni spomin, vidnoprostorski delovni spomin, moteči dražljaji, negativna čustva, smer motnje


Citiraj:
Starc, M. in Repovš, G. (2015). Vpliv različnih motečih dražljajev na prostorski delovni spomin [The influence of various distracting stimuli on spatial working memory]. Psihološka obzorja, 24, 76–89. https://doi.org/10.20419/2015.24.433


Seznam literature v članku


Anticevic, A., Repovš, G. in Barch, D. M. (2010). Resisting emotional interference: brain regions facilitating working memory performance during negative distraction. Cognitive, Affective and Behavioral Neuroscience, 10(2), 159–173. CrossRef

Awh, E. in Jonides, J. (2001). Overlapping mechanisms of attention and spatial working memory. Trends in Cognitive Sciences, 5(3), 119–126. CrossRef

Awh, E., Vogel, E. K. in Oh, S.-H. (2006). Interactions between attention and working memory. Neuroscience, 139 (1), 201–208. CrossRef

Bakeman, R. (2005). Recommended effect size statistics for repeated measures designs. Behavior Research Methods, 37(3), 379–384. CrossRef

Chafee, M. V. in Goldman-Rakic, P. S. (1998). Matching patterns of activity in primate prefrontal area 8a and parietal area 7ip neurons during a spatial working memory task. Journal of Neurophysiology, 79(6), 2919–2940.

Cohen, J. (2013). Statistical power analysis for the behavioral sciences. London, Združeno kraljestvo: Routledge.

Compte, A. (2000). Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network Mmodel. Cerebral Cortex, 10(9), 910–923. CrossRef

Corbetta, M., Kincade, J. M. in Shulman, G. L. (2002). Neural systems for visual orienting and their relationships to spatial working memory. Journal of Cognitive Neuroscience, 14(3), 508–523. CrossRef

Dan-Glauser, E. S. in Scherer, K. R. (2011). The Geneva affective picture database (GAPED): a new 730-picture database focusing on valence and normative significance. Behavior Research Methods, 43(2), 468–477. CrossRef

Dolcos, F. in McCarthy, G. (2006). Brain systems mediating cognitive interference by emotional distraction. The Journal of Neuroscience, 26(7), 2072–2079. CrossRef

Dolcos, F., Diaz-Granados, P., Wang, L. in McCarthy, G. (2008). Opposing influences of emotional and non-emotional distracters upon sustained prefrontal cortex activity during a delayed-response working memory task. Neuropsychologia, 46(1), 326–335. CrossRef

Dolcos, F., Kragel, P., Wang, L. in McCarthy, G. (2006). Role of the inferior frontal cortex in coping with distracting emotions. Neuroreport, 17(15), 1591–1594. CrossRef

Fales, C. L., Becerril, K. E., Luking, K. R. in Barch, D. M. (2010). Emotional-stimulus processing in trait anxiety is modulated by stimulus valence during neuroimaging of a working-memory task. Cognition and Emotion, 24(2), 200–222. CrossRef

Field, A., Miles, J. in Field, Z. (2012). Discovering statistics using R. London: Sage.

Funahashi, S. (2006). Prefrontal cortex and working memory processes. Neuroscience, 139(1), 251–261. CrossRef

Funahashi, S. (2013). Space representation in the prefrontal cortex. Progress in Neurobiology, 103, 131–155. CrossRef

Funahashi, S., Bruce, C. J. in Goldman-Rakic, P. S. (1989). Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. Journal of Neurophysiology, 61(2), 331–349.

Funahashi, S., Bruce, C. J. in Goldman-Rakic, P. S. (1990). Visuospatial coding in primate prefrontal neurons revealed by oculomotor paradigms. Journal of Neurophysiology, 63(4), 814–831.

Goldman-Rakic, P. S. (1990). Cellular and circuit basis of working memory in prefrontal cortex of nonhuman primates. Progress in Brain Research, 85, 325–335; discussion 335–336. CrossRef

Goldman-Rakic, P. S. (1995). Cellular basis of working memory. Neuron, 14(3), 477–485. CrossRef

Goldman-Rakic, P. S. (1999). The physiological approach: Functional architecture of working memory and disordered cognition in schizophrenia. Biological Psychiatry, 46(5), 650–661. CrossRef

González-Garrido, A. A., López-Franco, A. L., Gómez-Velázquez, F. R., Ramos-Loyo, J. in Sequeira, H. (2015). Emotional content of stimuli improves visuospatial working memory. Neuroscience Letters, 585, 43–47. CrossRef

Gruber, J., Purcell, A. L., Perna, M. J. in Mikels, J. A. (2013). Letting go of the bad: Deficit in maintaining negative, but not positive, emotion in bipolar disorder. Emotion, 13(1), 168–175. CrossRef

Haun, D. B. M., Allen, G. L. in Wedell, D. H. (2005). Bias in spatial memory: A categorical endorsement. Acta Psychologica, 118(1–2), 149–170. CrossRef

Huttenlocher, J., Hedges, L. V. in Duncan, S. (1991). Categories and particulars: Prototype effects in estimating spatial location. Psychological Review, 98(3), 352–376. CrossRef

Huttenlocher, J., Hedges, L. V., Corrigan, B. in Crawford, L. E. (2004). Spatial categories and the estimation of location. Cognition, 93(2), 75–97. CrossRef

Jacques, C. in Rossion, B. (2004). Concurrent processing reveals competition between visual representations of faces. Neuroreport, 15(15), 2417–2421. CrossRef

Jerde, T. A. in Curtis, C. E. (2013). Maps of space in human frontoparietal cortex. Journal of Physiology, Paris, 107(6), 510–516. CrossRef

Joormann, J., Levens, S. M. in Gotlib, I. H. (2011). Sticky thoughts: Depression and rumination are associated with difficulties manipulating emotional material in working memory. Psychological Science, 22(8), 979–983. CrossRef

Kensinger, E. A. in Corkin, S. (2003). Effect of negative emotional content on working memory and long-term memory. Emotion, 3(4), 378–393. CrossRef

Krause-Utz, A., Oei, N. Y. L., Niedtfeld, I., Bohus, M., Spinhoven, P., Schmahl, C. in Elzinga, B. M. (2012). Influence of emotional distraction on working memory performance in borderline personality disorder. Psychological Medicine, 42(10), 2181–2192. CrossRef

Lang, P. J., Bradley, M. M. in Cuthbert, B. N. (2008). International affective picture system (IAPS): Affective ratings of pictures and instruction manual (Technical Report a-8). Gainesville, FL, ZDA: University of Florida, NIMH Center for the Study of Emotion and Attention. Lavie, N. (2005). Distracted and confused? Selective attention under load. Trends in Cognitive Sciences, 9(2), 75–82. CrossRef

Lavric, A., Rippon, G. in Gray, J. R. (2003). Threat-evoked anxiety disrupts spatial working memory performance: An attentional account. Cognitive Therapy and Research, 27(5), 489–504. CrossRef

Li, X., Chan, R. C. in Luo, Y.-J. (2010). Stage effects of negative emotion on spatial and verbal working memory. BMC Neuroscience, 11, 60. CrossRef

Luck, S. J. in Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279–281. CrossRef

Maljkovic, V. in Martini, P. (2005). Short-term memory for scenes with affective content. Journal of Vision, 5(3), 215–229. CrossRef

Marchewka, A., Zurawski, Ł., Jednorog, K. in Grabowska, A. (2014). The Nencki Affective Picture System (NAPS): Introduction to a novel, standardized, wide-range, high-quality, realistic picture database. Behavior Research Methods, 46(2), 596–610. CrossRef

MathWorks. (2012). MATLAB 2012b [računalniški program]. Natick, MA, ZDA: Avtor.

Matsushima, A. in Tanaka, M. (2014). Different neuronal computations of spatial working memory for multiple locations within versus across visual hemifields. The Journal of Neuroscience : the Official Journal of the Society for Neuroscience, 34(16), 5621–5626. CrossRef

Murray, J. D., Anticevic, A., Gancsos, M., Ichinose, M., Corlett, P. R., Krystal, J. H. in Wang, X.-J. (2012). Linking microcircuit dysfunction to cognitive impairment: Effects of disinhibition associated with schizophrenia in a cortical working memory model. Cerebral Cortex, 24(4), 859–872. CrossRef

Olshausen, B. (2005). Lab #2. Topics in Vision [spletno učno gradivo]. Dosegljivo na: CrossRef

Pessoa, L. (2009). How do emotion and motivation direct executive control? Trends in Cognitive Sciences, 13 (4), 160–166. CrossRef

Phelps, E. A., Ling, S. in Carrasco, M. (2006). Emotion facilitates perception and potentiates the perceptual benefits of attention. Psychological Science, 17(4), 292–299. CrossRef

R Core Team. (2014). R: A language and environment for statistical computing [računalniški program]. Vienna, Austria: R Foundation for Statistical Computing. Dosegljivo na http://www.R-project.org/.

Repovš, G. in Baddeley, A. D. (2006). The multi-component model of working memory: explorations in experimental cognitive psychology. Neuroscience, 139(1), 5–21. CrossRef

Rossion, B. in Caharel, S. (2011). ERP evidence for the speed of face categorization in the human brain: Disentangling the contribution of low-level visual cues from face perception. Vision Research, 51(12), 1297–1311. CrossRef

Sadr, J. in Sinha, P. (2004). Object recognition and random image structure evolution. Cognitive Science, 28(2), 259–287. CrossRef

Shackman, A. J., Sarinopoulos, I., Maxwell, J. S., Pizzagalli, D. A., Lavric, A. in Davidson, R. J. (2006). Anxiety selectively disrupts visuospatial working memory. Emotion, 6(1), 40–61. CrossRef

Vogel, E. K., McCollough, A. W. in Machizawa, M. G. (2005). Neural measures reveal individual differences in controlling access to working memory. Nature, 438(7067), 500–503. CrossRef

Zhang, J.-N., Xiong, K.-L., Qiu, M.-G., Zhang, Y., Xie, B., Wang, J., ... Zhang, J. J. (2013). Negative emotional distraction on neural circuits for working memory in patients with posttraumatic stress disorder. Brain Research, 1531, 94–101. CrossRef


« Nazaj na Letnik 24 (2015)