Go to the article page in English / Pojdi na angleško stran članka
Učinek računalniškega kognitivnega treninga prostorske navigacije na kognitivne sposobnosti pri nadarjenih učencih
Barbara Slatenšek, Vojko Kavčič in Karin Bakračevič
Polno besedilo (pdf) | Ogledi: 96 | Napisan v slovenščini. | Objavljeno: 7. maj 2021
https://doi.org/10.20419/2021.30.532 | Citati: CrossRef (0)
Povzetek: Prostorska navigacija je kompleksna kognitivna sposobnost, ki je nujna za vsakodnevno delovanje v okolju in je odvisna od širokega spektra kognitivnih sposobnosti. Namen pričujoče raziskave je bil preveriti učinek računalniškega kognitivnega treninga prostorske navigacije na povečanje obsega kratkoročnega spomina, delovnega spomina, vidnoprostorskega spomina in besednega spomina ter na izboljšanje hitrosti procesiranja informacij in izvršilnih funkcij pri nadarjenih učencih. V raziskavi je sodelovalo 28 učencev iz 5. in 6. razreda osnovne šole, ki so bili identificirani kot nadarjeni učenci na različnih področjih in so na testu inteligentnosti (Standardne progresivne matrike [SPM]) dosegli nadpovprečen rezultat. V eksperimentalni skupini (13 učencev) so nadarjeni učenci izvajali kognitivni trening z nalogami virtualnega labirinta v osmih srečanjih po 45 minut enkrat tedensko, medtem ko je bila kontrolna skupina pasivna. Rezultati so pokazali, da je bil kognitivni trening učinkovit, saj so nadarjeni učenci v eksperimentalni skupini v primerjavi z učenci iz kontrolne skupine po končanem treningu z virtualnim labirintom dosegli statistično pomembno boljše rezultate pri hitrosti procesiranja in pri takojšnjem priklicu vidnoprostorskega spomina. Rezultati naše raziskave kažejo na učinkovitost kognitivnega treninga tudi pri nadarjenih učencih z višjimi kognitivnimi sposobnostmi.
Ključne besede: prostorska navigacija, kognitivni trening, virtualni labirint, kognitivne sposobnosti, nadarjeni učenci
Citiraj:
Slatenšek, B., Kavčič, V. in Bakračevič, K. (2021). Učinek računalniškega kognitivnega treninga prostorske navigacije na kognitivne sposobnosti pri nadarjenih učencih [The effect of computerized cognitive training of spatial navigation on cognitive abilities in gifted pupils]. Psihološka obzorja, 30, 101–111. https://doi.org/10.20419/2021.30.532
Seznam literature v članku
Anga, S. Y., Leea, K., Cheamb, F., Poona, K. in Koha, J. (2015). Updating and working memory training: Immediate improvement, long-term maintenance and generalisability to non-trained tasks. Journal of Applied Research in Memory and Cognition, 4(2), 121–128. CrossRef
Barnes, J. J., Nobre, A. C., Woolrich, M. W., Baker, K. in Astle, D. E. (2016). Training working memory in childhood enhances coupling between frontoparietal control network and task-related regions. The Journal of Neuroscience, 36(34), 9001–9011. CrossRef
Bohbot, V. D., McKenzie, S., Konishi, K., Fouquet, C., Kurdi, V., Schachar, R., Boivin, M. in Robaey, P. (2012). Virtual navigation strategies from childhood to senescence: Evidence for changes across the life span. Frontiers in Aging Neuroscience, 4, članek 28. CrossRef
Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155–159. CrossRef
Edwards, J. D., Wadley, V. G., Vance, D. E., Wood, K., Roenker, D. L. in Ball, K. K. (2013). The impact of speed of processing training on cognitive and everyday performance. Aging and Mental Health, 9(3), 262–271. CrossRef
Fenner, J., Heathcote, D. in Smith, J. J. (2000). The development of wayfinding competency: Asymmetrical effects of visuo-spatial and verbal ability. Journal of Environmental Psychology, 20(2), 165–175. CrossRef
Goldstein, G. in Watson, J. R. (1989). Test-retest reliability of the Halstead- Reitan Battery and the WAIS in a neuropsychiatric population. Clinical Neuropsychologist, 3(3), 265–272. CrossRef
Gray, S. A., Chaban, P., Martinussen, R., Goldberg, R., Gotlieb, H., Kronitz, R., Hockenberry, M. in Tannock, R. (2012). Effects of a computerized working memory training program on working memory, attention, and academics in adolescents with severe LD and comorbid ADHD: A randomized controlled trial. Journal of Child Psychology and Psychiatry, 53(12), 1277–1284. CrossRef
Hötting, K., Holzschneider, K., Stenzel, A., Wolbers, T. in Röder, B. (2013). Effects of a cognitive training on spatial learning and associated functional brain activations. BMC Neuroscience, 14, članek 73. CrossRef
Janzen, G., Jansen, C. in van Turennout, M. (2008). Memory consolidation of landmarks in good navigators. Hippocampus, 18(1), 40–47. CrossRef
Juriševič, M. (2011). Vzgoja in izobraževanje nadarjenih [Educaton of gifted students]. V J. Krek in M. Metljak (ur.), Bela knjiga o vzgoji in izobraževanju v Republiki Sloveniji 2011 [White paper on education in the Republic of Slovenia] (str. 329–345). Zavod RS za šolstvo.
Kaufman, A. S. (1994). Intelligent testing with WISC-III. Wiley.
Kavčič, V. (2015). Umovadba za bistre možgane v poznih letih [Cognitive training for smart brains in old age]. Miš.
Kraemer, D. J. M., Schinazi, V. R., Cawkwell, P. B., Tekriwal, A., Epstein, R. A. in Thompson-Schill, S. L. (2017). Verbalizing, visualizing, and navigating: The effect of strategies on encoding a large-scale virtual environment. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(4), 611–621. CrossRef
Lee, H., Boot, W. R., Basak, C., Voss, M. W., Prakash, R. S., Neider, M., Erickson, K. I., Simons, D. J., Fabiani, M., Gratton, G., Low, K. A., Kramer, A. F. (2012). Performance gains from directed training do not transfer to untrained tasks. Acta Psychologica, 139(1), 146–158. CrossRef
Leonard, L. B., Ellis, W. S., Miller, C. A., Francis, D. J., Tomblin, J. B. in Kail, R. V. (2007). Speed of processing, working memory, and language impairment in children. Journal of Speech, Language, and Hearing Research, 50(2), 408–428. CrossRef
Lezak, M. D., Howieson, D. B., Bigler, E. D. in Tranel, D. (2012). Neuropsychological assessment (5. izd.). Oxford University Press.
Lövdén, M., Schaefera, S., Noacka, H., Bodammera, N. C., Kühnd, S., Heinzef, H. J., Düzelf, E., Bäckmana, L. in Lindenbergera, U. (2012). Spatial navigation training protects the hippocampus against age-related changes during early and late adulthood. Neurobiology of Aging, 33(3), 620.e9-620.e22. CrossRef
Marusic, U., Giordani, B., Moffat, S. D., Petrič, M., Dolenc, P., Pišot, R. in Kavcic, V. (2016). Computerized cognitive training during physical inactivity improves executive functioning in older adults. Aging, Neuropsychology, and Cognition, 25(1), 49–69. CrossRef
McCarney, R., Warner, J., Iliffe, S., Haselen, R., Griffin, M. in Fisher, P. (2007). The Hawthorne effect: A randomised, controlled trial. BMC Medical Research Methodology, 7, članek 30. CrossRef
Michigan State University, Games for Entertainment and Learning Lab. (2016). Brain Powered Games: Maze Training [računalniški program]. https://brainpoweredgames.msu.edu/
Miller, J. F., Neufang, M., Solway, A., Brandt, A., Trippel, M., Mader, I., Hefft, S., Merkow, M., Polyn,S. M., Jacobs, J., Kahana, M. J. in Schulze-Bonhage, A. (2013). Neural activity in human hippocampal formation reveals the spatial context of retrieved memories. Science, 342(6162), 1111–1114. CrossRef
Moffat, S. D. (2009). Aging and spatial navigation: What do we know and where do we go? Neuropsychology Review, 19(4), 478–489. CrossRef
Moffat, S. D., Kennedy, K. M., Rodrigue, K. M. in Raz, N. (2006). Extrahippocampal contributions to age differences in human spatial navigation. Cerebral Cortex, 17(6), 1274–1282. CrossRef
Moffat, S. D., Zonderman, A. B. in Resnick, S. M. (2001). Age differences in spatial memory in a virtual environment navigation task. Neurobiology of Aging, 22(5), 787–796. CrossRef
Mozolic, J. L., Long, A. B., Morgan, A. R., Payne, M. R. in Laurienti, P. J. (2011). A cognitive training intervention improves modality-specific attention in a randomized controlled trial of healthy older adults. Neurobiology of Aging, 32(4), 655–668. CrossRef
Musek, J. (2012). Kognitivne sposobnosti: Sodobni pogled na njihovo strukturo in njihovo povezanost s starostjo in intelektualnim staranjem [Cognitive abilities: A recent look at their structure and their connections with age and intellectual aging]. Anthropos, 44(3/4), 103–123.
Nori, R., Grandicelli, S. in Giusberti, F. (2006). Visuo-spatial ability and wayfinding performance in real-world. Cognitive Processing, 7(1), 135–137. CrossRef
Novak, M. (2003). Aktivne oblike dela z nadarjenimi učenci [Active forms of work with gifted students]. V M. Blažič (ur.), Nadarjeni med teorijo in prakso [The gifted between theory and practice] (str. 318–329). Slovensko združenje za nadarjene.
Piccardi, L., Palermo, L., Bocchi, A., Guariglia, C. in D'Amico, S. (2015). Does spatial locative comprehension predict landmark-based navigation? PloS One, 10(1), članek e0115432. CrossRef
Richardson, J. T. E. (2011). Eta squared and partial eta squared as measurements of effect size in educational research. Educational Research Review, 6(2), 135–147. CrossRef
Strauss, E., Sherman, E. M. S. in Spreen, O. (2006). A compendium of neuropsychological tests: Administration, norms, and commentary (3. izd.). Oxford University Press.
Tom, C. in Tversky, B. (2012). Remembering routes: Streets and landmarks. Applied Cognitive Psychology, 26(2), 182–193. CrossRef
van Ekert, J., Wegman, J., Jansen, C., Takashima, A. in Janzen, G. (2017). The dynamics of memory consolidation of landmarks. Hippocampus, 27(4), 393–404. CrossRef
Wechsler, D. (2001). WISC-IIISI: Wechslerjeva lestvica inteligentnosti za otroke: Priročnik [WISC-IIISI: Wechsler Intelligence Scale for Children: Manual]. Center za psihodiagnostična sredstva.
Willis, S. L. in Schaie, K. W. (2009). Cognitive training and plasticity: Theoretical perspective and methodological consequences. Restorative Neurology and Neuroscience, 27(5), 375–389. CrossRef
Wolbers, T. in Hegarty, M. (2010). What determines our navigational abilities? Trends in Cognitive Sciences, 14(3), 138–146. CrossRef
Žagar, D. (2012). Drugačni učenci [Different students]. Znanstvena založba Filozofske fakultete.