Pojdi na slovensko stran članka / Go to the article page in Slovene
Can inhibition or shifting training enhance cognitive abilities in emerging adults?
Anja Podlesek, Marina Martinčević & Andrea Vranić
Full text (pdf) | Views: 125 | Written in English. | Published: May 7, 2021
https://doi.org/10.20419/2021.30.529 | Cited By: CrossRef (0)
Abstract: Executive functions enable and support most of our daily cognitive functioning. Within the number of executive functions proposed, updating, inhibition and shifting are most often considered as the three core executive functions. Cognitive training paradigms provide a platform for a possible enhancement of these functions. Since updating training has been studied to a greater extent, we wanted to investigate the effectiveness of inhibition and shifting training in this study. Emerging adults (psychology students) were randomly assigned either to the inhibition training (based on the Simon task; n = 36) or to the shifting training (based on the task switching paradigm; n = 35). Both groups underwent twelve 20-minute sessions distributed over four weeks. Measurements before and after the training included criterion tasks (i.e. the training tasks), near-transfer tasks (i.e. tasks that address the trained functions but use different types of stimuli or rules to respond), and far-transfer tasks (i.e., tasks that address untrained cognitive functions). The control participants (n = 36) were tested with a combination of these tasks. Both training groups improved their criteria task performance over time, while convincing training-related gains were not found in either near- or far-transfer tasks. This study raises some conceptual questions for the training of executive functions with respect to a sample of emerging adults with above-average cognitive abilities, motivational elements of training, and the role of executive functions in more complex everyday cognitive activities.
Keywords: cognitive training, executive functions, inhibition, shifting
Cite:
Podlesek, A., Martinčević, M., & Vranić, A. (2021). Can inhibition or shifting training enhance cognitive abilities in emerging adults? Psihološka obzorja, 30, 138–152. https://doi.org/10.20419/2021.30.529
Reference list
Anderson, K., Deane, K., Lindley, D., Loucks, B., & Veach, E. (2012). The effects of time of day and practice on cognitive abilities: The PEBL Tower of London, Trail-making, and Switcher tasks. Pebl Technical Report Series.
Au, J., Sheehan, E., Tsai, N., Duncan, G. J., Buschkuehl, M., & Jaeggi, S. M. (2015). Improving fluid intelligence with training on working memory: A meta-analysis. Psychonomic Bulletin & Review, 22(2), 366–377. CrossRef
Baddeley, A. (2007). Oxford psychology series: Vol. 45. Working memory, thought, and action. Oxford University Press. CrossRef
Baddeley, A., & Hitch, G. J. (1974). Working memory. In G. A. Bower (Ed.), Recent advances in learning and motivation (pp. 47–90). Academic Press. CrossRef
Barnett, S. M., & Ceci, S. J. (2002). When and where do we apply what we learn? A taxonomy for far transfer. Psychological Bulletin, 128(4), 612–637. CrossRef
Berkman, E. T., Kahn, L. E., & Merchant, J. S. (2014). Training-induced changes in inhibitory control network activity. Journal of Neuroscience, 34(1), 149–157. CrossRef
Bernal, B., & Altman, N. (2009). Neural networks of motor and cognitive inhibition are dissociated between brain hemispheres: An fMRI study. International Journal of Neuroscience, 119(10), 1848–1880. CrossRef
Bezdjian, S., Baker, L. A., Lozano, D. I., & Raine, A. (2009). Assessing inattention and impulsivity in children during the Go/NoGo task. British Journal of Developmental Psychology, 27(2), 365–383. CrossRef
Burgess, P. W., & Shallice, T. (1997). The relationship between prospective and retrospective memory: Neuropsychological evidence. In M. A. Conway (Ed.), Studies in cognition. Cognitive models of memory (pp. 247–272). The MIT Press.
Chan, R. C. K., Shum, D., Toulopoulou, T., & Chen, E. Y. H. (2008). Assessment of executive functions: Review of instruments and identification of critical issues. Archives of Clinical Neuropsychology, 23(2), 201–216. CrossRef
Conway, A. R., Kane, M. J., Bunting, M. F., Hambrick, D. Z., Wilhelm, O., & Engle, R. W. (2005). Working memory span tasks: A methodological review and user's guide. Psychonomic Bulletin & Review, 12(5), 769–786. https://link.springer.com/content/pdf/10.3758/BF03196772.pdfCrossRef
Cowan, N. (2005). Essays in cognitive psychology. Working memory capacity. Psychology Press.
Dahlin, E., Nyberg, L., Bäckman, L., & Neely, A. S. (2008). Plasticity of executive functioning in young and older adults: Immediate training gains, transfer, and long-term maintenance. Psychology and Aging, 23(4), 720–730. CrossRef
De Baene, W., Kühn, S., & Brass, M. (2012). Challenging a decade of brain research on task switching: Brain activation in the task-switching paradigm reflects adaptation rather than reconfiguration of task sets. Human Brain Mapping, 33(3), 639–651. CrossRef
De Simoni, C., & von Bastian, C. C. (2018). Working memory updating and binding training: Bayesian evidence supporting the absence of transfer. Journal of Experimental Psychology: General, 147(6), 829–858. CrossRef
Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135–168. CrossRef
Dowsett, S. M., & Livesey, D. J. (2000). The development of inhibitory control in preschool children: Effects of "executive skills" training. Developmental Psychobiology, 36(2), 161–174. CrossRef
Edwards, J. D., Fausto, B. A., Tetlow, A. M., Corona, R. T., & Valdés, E. G. (2018). Systematic review and meta-analyses of useful field of view cognitive training. Neuroscience and Biobehavioral Reviews, 84, 72–91. CrossRef
Ellis, J., & Kvavilashvili, L. (2000). Prospective memory in 2000: Past, present, and future directions. Applied Cognitive Psychology, 14(7), S1–S9. CrossRef
Friedman, N. P., & Miyake, A. (2017). Unity and diversity of executive functions: Individual differences as a window on cognitive structure. Cortex, 86, 186–204. CrossRef
Friedman, N. P., Miyake, A., Corley, R. P., Young, S. E., DeFries, J. C., & Hewitt, J. K. (2006). Not all executive functions are related to intelligence. Psychological Science, 17(2), 172–179. CrossRef
Gaál, Z. A., & Czigler, I. (2018). Task-switching training and transfer: Age-related effects on late ERP components. Journal of Psychophysiology, 32, 106–130. CrossRef
Gazzaley, A., & Nobre, A. C. (2012). Top-down modulation: Bridging selective attention and working memory. Trends in Cognitive Sciences, 16(2), 129–135. CrossRef
Houben, K. (2011). Overcoming the urge to splurge: Influencing eating behavior by manipulating inhibitory control. Journal of Behavior Therapy and Experimental Psychiatry , 42 (3), 384–388. CrossRef
Houben, K., Nederkoorn, C., Wiers, R. W., & Jansen, A. (2011). Resisting temptation: Decreasing alcohol-related affect and drinking behavior by training response inhibition. Drug and Alcohol Dependence, 116(1–3), 132–136. CrossRef
Karbach, J., & Kray, J. (2009). How useful is executive control training? Age differences in near and far transfer of task-switching training. Developmental Science, 12(6), 978–990. CrossRef
Karbach, J., & Verhaeghen, P. (2014). Making working memory work: A meta-analysis of executive-control and working memory training in older adults. Psychological Science, 25CrossRef
Katz, B., Jones, M. R., Shah, P., Buschkuehl, M., & Jaeggi, S. M. (2016). Individual differences and motivational effects. In T. Strobach & J. Karbach (Eds.), Cognitive training: An overview of features and applications (pp. 157–166). Springer International Publishing. CrossRef
Khng, K. H., & Lee, K. (2014). The relationship between stroop and stop-signal measures of inhibition in adolescents: Influences from variations in context and measure estimation. PLoS ONE, 9(7), Article e101356. CrossRef
Kliegel, M., Ramuschkat, G., & Martin, M. (2003). Exekutive Funktionen und prospektive Gedächtnisleistung im Alter--eine differentielle Analyse von ereignis- und zeitbasierter prospektiver Gedächtnisleistung [Executive functions and prospective memory performance in old age: an analysis of event-based and time-based prospective memory]. Zeitschrift fur Gerontologie und Geriatrie, 36(1), 35–41. CrossRef
Kray, J., & Ferdinand, N. K. (2014). Task switching and aging. In J. A. Grange & G. Houghton (Eds.), Task switching and cognitive control (pp. 350–371). Oxford University Press. CrossRef
Kvavilashvili, L., & Ellis, J. (1996). Varieties of intention: Some distinctions and classifications. In M. A. Brandimonte, G. O. Einstein, & M. A. McDaniel (Eds.), Prospective memory: Theory and applications (pp. 23–52). Lawrence Erlbaum Associates.
Lah, A. (2020). Preverjanje veljavnosti pripomočka za merjenje kognitivnega nadzora [Validation of a new instrument for measuring cognitive control] [Master's thesis, University of Ljubljana]. https://repozitorij.uni-lj.si/Dokument.php?id=137548&lang=slv
Lustig, C., Shah, P., Seidler, R., & Reuter-Lorenz, P. A. (2009). Aging, training, and the brain: A review and future directions. Neuropsychology Review, 19(4), 504–522. CrossRef
Mangiafico, S. S. (2016). Summary and analysis of extension program evaluation in R, version 1.18.1. R companion. https://rcompanion.org/handbook/
Martin, M., Clare, L., Altgassen, A. M., Cameron, M. H., & Zehnder, F. (2011). Cognition-based interventions for healthy older people and people with mild cognitive impairment. Cochrane database of systematic reviews, (1). CrossRef
McDaniel, M. A., & Einstein, G. O. (2000). Strategic and automatic processes in prospective memory retrieval: A multiprocess framework. Applied Cognitive Psychology, 14(7), S127–S144. CrossRef
McDaniel, M. A., Glisky, E. L., Guynn, M. J., & Routhieaux, B. C. (1999). Prospective memory: A neuropsychological study. Neuropsychology, 13(1), 103–110. CrossRef
Melby-Lervåg, M., Redick, T. S., & Hulme, C. (2016). Working memory training does not improve performance on measures of intelligence or other measures of "far transfer": Evidence from a meta-analytic review. Perspectives on Psychological Science, 11(4), 512–534. CrossRef
Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex "frontal lobe" tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49–100. CrossRef
Monsell, S. (1996). Control of mental processes. In V. Bruce (Ed.), Unsolved mysteries of the mind: Tutorial essays in cognition (pp. 93–148). Taylor & Francis.
Mueller, S. T., & Piper, B. J. (2014). The Psychology Experiment Building Language (PEBL) and PEBL Test Battery. Journal of Neuroscience Methods, 222, 250–259. CrossRef
Pellicano, A., Lugli, L., Baroni, G., & Nicoletti, R. (2009). The Simon Effect with conventional signals: A time-course analysis. Experimental Psychology, 56(4), 219–227. CrossRef
Prosenik, U. (2019). Razvoj računalniške igre za izvedbo psiholoških testov in kognitivnega treninga [Development of a computer game for conducting psychological tests and cognitive training] [Master's thesis, University of Ljubljana]. https://repozitorij.uni-lj.si/Dokument.php?id=123259&lang=slv
R Core Team (2019). R: A language and environment for statistical computing [computer software]. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
Reynolds, C. R., & MacNeill Horton, A. (2008). Assessing executive functions: A life-span perspective. Psychology in the Schools, 45(9), 875–892. CrossRef
Rogers, R. D., & Monsell, S. (1995). Costs of a predictable switch between simple cognitive tasks. Journal of Experimental Psychology: General, 124(2), 207–231. CrossRef
Sala, G., & Gobet, F. (2019). Cognitive training does not enhance general cognition. Trends in Cognitive Sciences, 23(1), 9–20. CrossRef
Salthouse, T. A., Berish, D. E., & Siedlecki, K. L. (2004). Construct validity and age sensitivity of prospective memory. Memory & Cognition, 32(7), 1133–1148. CrossRef
Schnitzspahn, K. M., Stahl, C., Zeintl, M., Kaller, C. P., & Kliegel, M. (2013). The role of shifting, updating, and inhibition in prospective memory performance in young and older adults. Developmental Psychology, 49(8), 1544–1553. CrossRef
Simmonds, D. J., Pekar, J. J., & Mostofsky, S. H. (2008). Meta-analysis of Go/No-go tasks demonstrating that fMRI activation associated with response inhibition is task-dependent. Neuropsychologia, 46(1), 224–232. CrossRef
Smith, E. E., & Jonides, J. (1997). Working memory: A view from neuroimaging. Cognitive Psychology, 33(1), 5–42. CrossRef
Stoet, G. (2010). PsyToolkit - A software package for programming psychological experiments using Linux. Behavior Research Methods, 42(4), 1096–1104. CrossRef
Stoet, G. (2017). PsyToolkit: A novel web-based method for running online questionnaires and reaction-time experiments. Teaching of Psychology, 44(1), 24–31. CrossRef
Thorell, L. B., Lindqvist, S., Bergman Nutley, S., Bohlin, G., & Klingberg, T. (2009). Training and transfer effects of executive functions in preschool children. Developmental Science, 12(1), 106–113. CrossRef
Unsworth, N., & Spillers, G. J. (2010). Working memory capacity: Attention control, secondary memory, or both? A direct test of the dual-component model. Journal of Memory and Language, 62(4), 392–406. CrossRef
Van der Molen, M. J., Van Luit, J. E. H., Van der Molen, M. W., Klugkist, I., & Jongmans, M. J. (2010). Effectiveness of a computerised working memory training in adolescents with mild to borderline intellectual disabilities. Journal of Intellectual Disability Research, 54(5), 433–447. CrossRef
Vargha, A., & Delaney, H. D. (2000). A critique and improvement of the CL common language effect size statistics of McGraw and Wong. Journal of Educational and Behavioral Statistics, 25(2), 101–132. CrossRef
White, H. A., & Shah, P. (2006). Training attention-switching ability in adults with ADHD. Journal of Attention Disorders, 10(1), 44–53. CrossRef
Wongupparaj, P., Kumari, V., & Morris, R. G. (2015). The relation between a multicomponent working memory and intelligence: The roles of central executive and short-term storage functions. Intelligence, 53, 166–180. CrossRef
Wylie, G. R., Javitt, D. C., & Foxe, J. J. (2004). The role of response requirements in task switching: Dissolving the residue. NeuroReport, 15(6), 1079–1087. CrossRef
Zuber, S., Ihle, A., Loaiza, V. M., Schnitzspahn, K. M., Stahl, C., Phillips, L. H., Kaller, C. P., & Kliegel, M. (2019). Explaining age differences in working memory: The role of updating, inhibition, and shifting. Psychology & Neuroscience, 12(2), 191–208. CrossRef
Zuber, S., Kliegel, M., & Ihle, A. (2016). An individual difference perspective on focal versus nonfocal prospective memory. Memory & Cognition, 44(8), 1192–1203. CrossRef