Pojdi na slovensko stran članka / Go to the article page in Slovene
Higher neural demands on stimulus processing after prolonged hospitalization can be mitigated by a cognitively stimulating environment
Uroš Marušič, Rado Pišot & Vojko Kavčič
Full text (pdf) | Views: 103 | Written in English. | Published: May 7, 2021
https://doi.org/10.20419/2021.30.536 | Cited By: CrossRef (0)
Abstract: Prolonged periods of complete physical inactivity or bed rest trigger various alterations in the functional and metabolic levels of the human body. However, bed rest-related adaptations of the central nervous system are less known and thoroughly studied. The aim of this study was to investigate brain electrophysiological changes using event-related potentials (ERPs) after 14 days of bed rest and 12 consecutive sessions of computerized cognitive training (CCT). Sixteen older (Mage= 60 years) healthy volunteers were randomly divided into a CCT treatment group and an active control group. All participants performed ERP measurements based on the foveal visual presentation of a circle on a black background before and after bed rest. After 14 days of bed rest, participants in the control group showed increased peak P1 amplitude (p = .012), decreased P1 latency (p = .024), and increased P2 amplitude (p = .036), while the CCT group also showed decreased P1 latency (p = .023) and decreased P2 latency (p = .049). Our results suggest that, even from a central adaptation perspective, prolonged periods of physical inactivity or bed rest trigger additional neural recruitment and should therefore be minimized, and that CCT may serve as a tool to mitigate this. Future research should focus on other aspects of central nervous system adaptation following periods of immobilization/hospitalization to improve our knowledge of influence of physical inactivity and its effects on cortical activity and to develop appropriate countermeasures to mitigate functional dysregulation.
Keywords: bed rest immobilization, aging, electroencephalography (EEG), computerized cognitive training, event-related potential (ERP)
Cite:
Marušič, U., Pišot, R., & Kavčič, V. (2021). Higher neural demands on stimulus processing after prolonged hospitalization can be mitigated by a cognitively stimulating environment. Psihološka obzorja, 30, 55–61. https://doi.org/10.20419/2021.30.536
Reference list
Adams, G. R., Caiozzo, V. J., & Baldwin, K. M. (2003). Skeletal muscle unweighting: Spaceflight and ground-based models. Journal of Applied Physiology, 95(6), 2185–2201. CrossRef
Amenedo, E., & Dı́az, F. (1998). Aging-related changes in processing of non-target and target stimuli during an auditory oddball task. Biological Psychology, 48(3), 235–267. CrossRef
Amenedo, E., & Díaz, F. (1999). Ageing-related changes in the processing of attended and unattended standard stimuli. Neuroreport, 10(11), 2383–2388. CrossRef
Bach, M., & Ullrich, D. (1997). Contrast dependency of motion-onset and pattern-reversal VEPs: Interaction of stimulus type, recording site and response component. Vision Research, 37(13), 1845–1849. CrossRef
Brauns, K., Werner, A., Gunga, H. C., Maggioni, M. A., Dinges, D. F., & Stahn, A. (2019). Electrocortical evidence for impaired affective picture processing after long-term immobilization. Scientific Reports, 9(1), Article 16610. CrossRef
Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscientific Methods, 134(1), 9–21. CrossRef
De Sanctis, P., Katz, R., Wylie, G. R., Sehatpour, P., Alexopoulos, G. S., & Foxe, J. J. (2008). Enhanced and bilateralized visual sensory processing in the ventral stream may be a feature of normal aging. Neurobiology of Aging, 29(10), 1576–1586. CrossRef
Falkenstein, M., Yordanova, J., & Kolev, V. (2006). Effects of aging on slowing of motor-response generation. International Journal of Psychophysiology, 59(1), 22–29. CrossRef
Finnigan, S., O'Connell, R. G., Cummins, T. D., Broughton, M., & Robertson, I. H. (2011). ERP measures indicate both attention and working memory encoding decrements in aging. Psychophysiology, 48(5), 601–611. CrossRef
Goh, K. S., Low, S. K. M., Zhang, D., Png, G. K., Lin, H., Ang, W. S. T., & Lim, J. K. H. (2018). Mortality predictors in an acute care geriatric unit in Singapore. Proceedings of Singapore Healthcare, 27(4), 265–269. CrossRef
Goodin, D. S., Squires, K. C., Henderson, B. H., & Starr, A. (1978). Age-related variations in evoked potentials to auditory stimuli in normal human subjects. Electroencephalography and Clinical Neurophysiology, 44(4), 447–458. CrossRef
Goswami, N., Kavcic, V., Marusic, U., Simunic, B., Rossler, A., Hinghofer-Szalkay, H., & Pisot, R. (2015). Effect of computerized cognitive training with virtual spatial navigation task during bed rest immobilization and recovery on vascular function: A pilot study. Clinical Interventions in Aging, 10, 453–459. CrossRef
Grogorieva, L. S., & Kozlovskaia, I. B. (1987). Vliianie nevesomosti i gipokinezii na skorostno-silovye svoĭstva myshts cheloveka [Effect of weightlessness and hypokinesia on the velocity-strength properties of human muscles]. Kosmicheskaia Biologiia i Aviakosmicheskaia Meditsina, 21(1), 27–30.
Hillyard, S. A., Vogel, E. K., & Luck, S. J. (1998). Sensory gain control (amplification) as a mechanism of selective attention: Electrophysiological and neuroimaging evidence. Philosophical Transactions of the Royal Society B: Biological Sciences, 353(1373), 1257–1270. CrossRef
Ioseliani, K. K., Narinskaia, A. L., & Khisambeev, S. R. (1985). Psikhicheskaia adaptatsiia i rabotosposobnost' operatora pri modelirovanii nevesomosti [Psychological adaptation and work capacity during simulated weightlessness]. Kosmicheskaia Biologiia i Aviakosmicheskaia Meditsina, 19(1), 19–24.
Iragui, V. J., Kutas, M., Mitchiner, M. R., & Hillyard, S. A. (1993). Effects of aging on event-related brain potentials and reaction times in an auditory oddball task. Psychophysiology, 30(1), 10–22. CrossRef
Karamacoska, D., Barry, R. J., & Steiner, G. Z. (2019). Using principal components analysis to examine resting state EEG in relation to task performance. Psychophysiology, 56(5), Article e13327. CrossRef
Koppelmans, V., Bloomberg, J. J., De Dios, Y. E., Wood, S. J., Reuter-Lorenz, P. A., Kofman, I. S., Riascos, R., Mulavara, A. P., & Seidler, R. D. (2017). Brain plasticity and sensorimotor deterioration as a function of 70 days head down tilt bed rest. PloS One, 12(8), Article e0182236. CrossRef
Kuba, M., Kubová, Z., Kremláček, J., & Langrová, J. (2007). Motion-onset VEPs: Characteristics, methods, and diagnostic use. Vision Research, 47(2), 189–202. CrossRef
Kubová, Z., Kuba, M., Spekreijse, H., & Blakemore, C. (1995). Contrast dependence of motion-onset and pattern-reversal evoked potentials. Vision Research, 35(2), 197–205. CrossRef
Lai, L. Y., Frömer, R., Festa, E. K., & Heindel, W. C. (2020). Age-related changes in the neural dynamics of bottom-up and top-down processing during visual object recognition: An electrophysiological investigation. Neurobiology of Aging, 94, 38–49. CrossRef
LeBlanc, A. D., Spector, E. R., Evans, H. J., & Sibonga, J. D. (2007). Skeletal responses to space flight and the bed rest analog: A review. Journal of Musculoskeletal and Neuronal Interactions, 7(1), 33–47.
Lefebvre, C. D., Marchand, Y., Eskes, G. A., & Connolly, J. F. (2005). Assessment of working memory abilities using an event-related brain potential (ERP)-compatible digit span backward task. Clinical Neurophysiology, 116(7), 1665–1680. CrossRef
Li, K., Guo, X., Jin, Z., Ouyang, X., Zeng, Y., Feng, J., Wang, Y., Yao, L., & Ma, L. (2015). Effect of simulated microgravity on human brain gray matter and white matter - Evidence from MRI. PLoS One, 10(8), Article e0135835. CrossRef
Lipnicki, D. M., & Gunga, H. C. (2009). Physical inactivity and cognitive functioning: Results from bed rest studies. European Journal of Applied Physiology, 105(1), 27–35. CrossRef
Marusic, U., Giordani, B., Moffat, S. D., Petrič, M., Dolenc, P., Pišot, R., & Kavcic, V. (2018). Computerized cognitive training during physical inactivity improves executive functioning in older adults. Aging, Neuropsychology, and Cognition, 25(1), 49–69. CrossRef
Marusic, U., Kavcic, V., Giordani, B., Gerzevic, M., Meeusen, R., & Pisot, R. (2015). Computerized spatial navigation training during 14 days of bed rest in healthy older adult men: Effect on gait performance. Psychology and Aging, 30(2), 334–340. CrossRef
Marusic, U., Meeusen, R., Pisot, R., & Kavcic, V. (2014). The brain in micro- and hypergravity: The effects of changing gravity on the brain electrocortical activity. European Journal of Sport Science, 14(8), 813–822. CrossRef
Mulavara, A. P., Peters, B. T., Miller, C. A., Kofman, I. S., Reschke, M. F., Taylor, L. C., Lawrence, E. L., Wood, S. J., Laurie, S. S., Lee, S. M. C., Buxton, R. E., May-Phillips, T. R., Stenger, M. B., Ploutz-Snyder, L. L., Ryder, J. W., Feiveson, A. H., & Bloomberg, J. J. (2018). Physiological and functional alterations after spaceflight and bed rest. Medicine and Science in Sports and Exercise, 50(9), 1961–1980. CrossRef
Passaro, A., Soavi, C., Marusic, U., Rejc, E., Sanz, J. M., Morieri, M. L., Dalla Nora, E., Kavcic, V., Narici, M. V., Reggiani, C., Biolo, G., Zuliani, G., Lazzer, S., & Reggiani, C. (2017). Computerized cognitive training and brain derived neurotrophic factor during bed rest: Mechanisms to protect individual during acute stress. Aging (Albany NY) , 9(2), 393–407. CrossRef
Pavy-Le Traon, A., Heer, M., Narici, M. V., Rittweger, J., & Vernikos, J. (2007). From space to Earth: Advances in human physiology from 20 years of bed rest studies (1986-2006). European Journal of Applied Physiology, 101(2), 143–194. CrossRef
Perhonen, M. A., Franco, F., Lane, L. D., Buckey, J. C., Blomqvist, C. G., Zerwekh, J. E., Peshock, R. M., Weatherall, P. T., & Levine, B. D. (2001). Cardiac atrophy after bed rest and spaceflight. Journal of Applied Physiology, 91(2), 645–653. CrossRef
Pfefferbaum, A., Ford, J. M., Roth, W. T., Hopkins, W. F., 3rd, & Kopell, B. S. (1979). Event-related potential changes in healthy aged females. Electroencephalography and Clinical Neurophysiology, 46(1), 81–86. CrossRef
Pfefferbaum, A., Ford, J. M., Roth, W. T., & Kopell, B. S. (1980). Age-related changes in auditory event-related potentials. Electroencephalography and Clinical Neurophysiology, 49(3–4), 266–276. CrossRef
Pisot, R., Marusic, U., Biolo, G., Mazzucco, S., Lazzer, S., Grassi, B., Reggiani, C., Toniolo, L., di Prampero, P. E., Passaro, A., Narici, M., Mohammed, S., Rittweger, J., Gasparini, M., Gabrijelčič Blenkuš, M., & Šimunič, B. (2016). Greater loss in muscle mass and function but smaller metabolic alterations in older compared with younger men following 2 wk of bed rest and recovery. Journal of Applied Physiology (1985) , 120(8), 922–929. CrossRef
Pisot, R., Narici, M. V., Simunic, B., De Boer, M., Seynnes, O., Jurdana, M., Biolo, G., & Mekjavić, I. B. (2008). Whole muscle contractile parameters and thickness loss during 35-day bed rest. European Journal of Applied Physiology, 104(2), 409–414. CrossRef
Ponzetto, M., Maero, B., Maina, P., Rosato, R., Ciccone, G., Merletti, F., Rubenstein, L. Z., & Fabris, F. (2003). Risk factors for early and late mortality in hospitalized older patients: The continuing importance of functional status. The Journals of Gerontology, Series A: Biological Sciences and Medical Sciences, 58(11), 1049–1054. CrossRef
Potts, G. F. (2004). An ERP index of task relevance evaluation of visual stimuli. Brain and Cognition, 56(1), 5–13. CrossRef
Riis, J. L., Chong, H., McGinnnis, S., Tarbi, E., Sun, X., Holcomb, P. J., Rentz, D. M., & Daffner, K. R. (2009). Age-related changes in early novelty processing as measured by ERPs. Biological Psychology, 82(1), 33–44. CrossRef
Rittweger, J., Simunic, B., Bilancio, G., De Santo, N. G., Cirillo, M., Biolo, G., Pisot, R., Eiken, O., Mekjavic, I. B., & Narici, M. (2009). Bone loss in the lower leg during 35 days of bed rest is predominantly from the cortical compartment. Bone, 44(4), 612–618. CrossRef
Schuller, A. M., & Rossion, B. (2001). Spatial attention triggered by eye gaze increases and speeds up early visual activity. Neuroreport, 12(11), 2381–2386. CrossRef
Timiras, P. S. (1994). Disuse and aging: Same problem, different outcomes. Journal of Gravitational Physiology, 1(1), P5–7.
Traon, A. P., Sigaudo, D., Vasseur, P., Maillet, A., Fortrat, J. O., Hughson, R. L., Gauquelin-Koch, G., & Gharib, C. (1998). Cardiovascular responses to orthostatic tests after a 42-day head-down bed-rest. European Journal of Applied Physiology and Occupational Physiology, 77(1–2), 50–59. CrossRef
Vernikos, J., & Schneider, V. S. (2009). Space, gravity and the physiology of aging: Parallel or convergent disciplines? A mini-review. Gerontology, 56(2), 157–166. CrossRef
Yordanova, J., Kolev, V., Hohnsbein, J., & Falkenstein, M. (2004). Sensorimotor slowing with ageing is mediated by a functional dysregulation of motor-generation processes: Evidence from high-resolution event-related potentials. Brain, 127(2), 351–362. CrossRef
Zalar, B., Martin, T., & Kavcic, V. (2015). Cortical configuration by stimulus onset visual evoked potentials (SO-VEPs) predicts performance on a motion direction discrimination task. International Journal of Psychophysiology, 96(3), 125–133. CrossRef