Spletna stran Psiholoških obzorij uporablja piškotke za namene avtentikacije uporabnikov po prijavi na spletno stran, morebitno stalno prijavo na željo uporabnika in za namen beleženja števila ogledov posameznih strani Psiholoških obzorij.
Ali se strinjate, da na vaš računalnik (brskalnik) naložimo piškotke za te namene? Svojo odločitev lahko kasneje tudi spremenite na strani Zasebnost.

Želim izvedeti več

Psihološka obzorja :: Horizons of Psychology

Znanstveno-strokovna psihološka revija Društva psihologov Slovenije

Indeksirana v:
Scopus
PsycINFO
Academic OneFile

Smo člani DOAJ in CrossRef

sien
VSEBINA ZA AVTORJE PREDSTAVITEV UREDNIŠTVO POVEZAVE

Iskalnik

Moj račun

Članki z največ ogledi

 

« Nazaj na Letnik 21 (2012), Številka 3

flag Go to the article page in English / Pojdi na angleško stran članka


Nevrokognitivne osnove numeričnega procesiranja

Tina Bregant

pdf Polno besedilo (pdf)  |  Ogledi: 34  |  flagNapisan v slovenščini.  |  Objavljeno: 21. junij 2013

pdf https://doi.org/10.20419/2012.21.370  |  Citati: CrossRef (1)

Povzetek: V prispevku predstavimo nekaj novejših spoznanj s področja numerične kognicije in nevrokognitivnih osnov numeričnega procesiranja. Osnovo numerične kognicije predstavlja prepoznava in primerjava količin. Ker je ta sistem prepoznaven tako pri dojenčkih kot nekaterih živalskih vrstah, ga podrobneje predstavimo. Osnovni sistem ali matematično intuicijo lahko nadgradimo s kompleksnejšim, aritmetičnim procesiranjem, ki ga predstavimo v luči novejših nevroznanstvenih spoznanj. Spoznanja o numeričnem procesiranju lahko pomembno prispevajo k razumevanju matematičnih kompetenc v različnih obdobjih otrokovega razvoja ter tako prispevajo h kakovosti poučevanja matematike ter usvajanju matematičnih znanj in veščin.

Ključne besede: numerično procesiranje, štetje, matematične sposobnosti, možgani, razvoj otroka


Citiraj:
Bregant, T. (2012). Nevrokognitivne osnove numeričnega procesiranja [Brain mechanisms underlying numerical processing]. Psihološka obzorja, 21(3), 69–74. https://doi.org/10.20419/2012.21.370


Seznam literature v članku


Ansari, D. (2007). Does the parietal cortex distinguish between »10«, »ten«, and ten dots? Neuron, 53, 165–167. CrossRef

Arsalidou, M. in Taylor, M. J. (2011). Is 2+2=4? Meta analyses of brain areas needed for numbers and calculations. Neuroimage, 54, 2382–2393. CrossRef

Blair, K. P., Rosenberg–Lee, M., Tsang, J. M., Schwartz, D. L. in Menon, V. (2012). Beyond natural numbers: Negative number representation in parietal cortex. Frontiers in Human Neuroscience, 6(7). CrossRef

Cantlon, J. F. in Brannon, E. M. (2007). How much does number matter to a monkey (Macaca mulatta)? Journal of Experimental Psychology: Animal Behavior Processes, 33(1), 32–41. CrossRef

Chochon, F., Cohen, L., Moortele, P. F. in Dehaene, S. (1999). Differential contributions of the left and right inferior parietal lobules to number processing. Journal of Cognitive Neuroscience, 11, 617–630. CrossRef

Cohen Kadosh, R., Bien, N. in Sack, A. T. (2012). Automatic and intentional number processing both rely on intact right parietal cortex: A combined fMRI and neuro–navigated TMS study. Frontiers in Human Neuroscience, 6(2). CrossRef

Dehaene, S. (2009). Origins of mathematical intuitions: The case of arithmetic. The Year in Cognitive Neuroscience 2009: Annual NewYork Academy of Science, 1156, 232–259. CrossRef

Dehaene, S., Piazza, M., Pinel, P. in Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20(3/4/5/6), 487–506. CrossRef

Dehaene, S., Molko, N., Cohen, L. in Wilson, A. J. (2004). Arithmetic and the brain. Current Opinion in Neurobiology, 14, 218–224. CrossRef

De Smedt, B., Holloway, I. D. in Ansari, D. (2011). Effects of problem size and arithmetic operation on brain activation during calculation in children with varying levels of arithmetical fluency. NeuroImage, 57, 771–781. CrossRef

Garland, A., Low, J. in Burns, K. C. (2012). Large quantity discrimination by North Island robins (Petroica longipes). Animal cognition, 15, 1129–1140. CrossRef

Grabner, R. H., Reishofer, G., Koschutnig, K. in Ebner, F. (2011). Brain correlates of mathematical competence in processing mathematical representations. Frontiers in Human Neuroscience, 5(130). CrossRef

Houdé, O., Rossi, S., Lubin, A. in Joliot, M. (2010). Mapping numerical processing, reading, and executive functions in the developing brain: An fMRI meta–analysis of 52 studies including 842 children. Developmental Science, 13(6), 876–885. CrossRef

Jordan, K. E., MacLean, E. L. in Brannon, E. (2008). Monkeys match and tally quantities across senses. Cognition, 108(3), 617–625. CrossRef

Leighton, T. G., Richards, S. D. in White, P. R. (2004). Marine mammal signals in bubbly water. V Proceedings of the Institute of Acoustics Symposium on Bio–sonar and Bioacoustics Systems. Institute of Acoustics Symposium on Bio–sonar and Bioacoustics Systems, University of Southampton, Institute of Acoustics.

Nieder, A. in Dehaene, S. (2009). Representation of number in the brain. Annual Review of Neuroscience, 32, 185–208. CrossRef

Pepperberg, I. M. (2002). The Alex Studies: Cognitive and communicative abilities of grey parrots. Cambridge, MA, ZDA: Harvard University Press.

Piazza, M. (2010). Neurocognitive start–up tools for symbolic number representations. Trends in Cognitive Sciences, 14(12), 542–551. CrossRef

Piazza, M., Pinel, P., Le Bihan, D. in Dehaene, S. (2007). A magnitude code common to numerosities and number symbols in human intraparietal cortex. Neuron, 53, 293–305. CrossRef

Rugani, R., Fontanari, L., Simoni, E., Regolin L. in Vallortigara G. (2009). Arithmetic in newborn chicks. Proceedings of the Royal Society, 276(1666), 2451–2460. CrossRef

Stanescu–Cosson, R., Pinel, P., van de Moortele, P. F., Le Bihan, D., Cohen, L. in Dehaene, S. (2000). Understanding dissociation in dyscalculia: A brain imaging study of the impact of number size on the cerebral networks for exact and approximate calculations. Brain, 123, 2240–2255. CrossRef

Thioux, M., Pesenti, M., De Volder, A. in Seron, X. (2002). Category–specific representation and processing of numbers and animal names across semantic tasks: A PET study. NeuroImage, 13(6 suppl. 2/2), S617. CrossRef


Citati prek sistema CrossRef (1)

Mathematical Competence of a Child - Life Success of an Adult
       Tina Bregant
       Interdisciplinary Description of Complex Systems, 2016
       https://doi.org/10.7906/indecs.14.4.3


« Nazaj na Letnik 21 (2012), Številka 3